Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
HKU Scholars Hub
Article . 2012
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Id-1 promotes chromosomal instability through modification of APC/C activity during mitosis in response to microtubule disruption

Authors: Di, K; Han, HY; Wong, YC; Leung, SCL; Ling, MT; Zhang, X; Wang, X;

Id-1 promotes chromosomal instability through modification of APC/C activity during mitosis in response to microtubule disruption

Abstract

Id-1 (Inhibitor of DNA binding/differential-1) plays a positive role in tumorigenesis through regulation of multiple signaling pathways. Recently, it is suggested that upregulation of Id-1 in cancer cells promotes chromosomal instability. However, the underlying molecular mechanism is not known. In this study, we report a novel function of Id-1 in regulation of mitosis through physical interaction with Cdc20 (cell division cycle protein 20) and Cdh1 (Cdc20 homolog 1). During early mitosis, Id-1 interacts with Cdc20 and RASSF1A (Ras association domain family 1A), leading to enhanced APC(Cdc20) activity, which in turn promotes cyclin B1/securin degradation and premature mitosis. During late mitosis, Id-1 binds to Cdh1 and disrupts the interaction between Cdh1 and APC, resulting in suppression of APC(Cdh1) activity. On the other hand, overexpression of Cdh1 leads to Id-1 protein degradation, suggesting that Id-1 may also act as a substrate of APC(Cdh1). The negative effect of Id-1 on APC(Cdh1) results in suppression of APC(Cdh1)-induced Aurora A and Cdc20 degradation, leading to failure in cytokinesis. As a result, overexpression of Id-1 in human prostate epithelial cells leads to polyploidy in response to microtubule disruption, and this effect is abolished when Id-1 expression is suppressed using antisense technology. These results demonstrate a novel function of Id-1 in promoting chromosomal instability through modification of APC/C activity during mitosis and provide a novel molecular mechanism accounted for the function of Id-1 as an oncogene.

Countries
China (People's Republic of), Australia
Related Organizations
Keywords

Inhibitor of Differentiation Protein 1, Cdc20 Proteins, Ubiquitin - Metabolism, Mitosis, Cell Cycle Proteins, Cyclin B, Protein Serine-Threonine Kinases, Microtubules, Protein-Serine-Threonine Kinases - Metabolism, Anaphase-Promoting Complex-Cyclosome, Cell Line, Aurora Kinases, Inhibitor Of Differentiation Protein 1 - Physiology, Chromosomal Instability, Microtubules - Physiology, Humans, Cdc20, aneuploidy, Cyclin B1, Id-1, mitosis, Cdh1, Ubiquitin, Tumor Suppressor Proteins, G1 Phase, Ubiquitin-Protein Ligase Complexes, Cyclin B - Metabolism, Ubiquitin-Protein Ligase Complexes - Physiology, Tumor Suppressor Proteins - Physiology, Cell Cycle Proteins - Physiology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research