
The mammalian molecular clock comprises a complex network of transcriptional programs that integrates environmental signals with physiological pathways in a tissue-specific manner. Emerging technologies are extending knowledge of basic clock features by uncovering their underlying molecular mechanisms, thus setting the stage for a 'systems' view of the molecular clock. Here we discuss how recent data from genome-wide genetic and epigenetic studies have informed the understanding of clock function. In addition to its importance in human physiology and disease, the clock mechanism provides an ideal model to assess general principles of dynamic transcription regulation in vivo.
Epigenomics, Transcriptional Activation, Ubiquitination, DNA Methylation, Circadian Rhythm, Histones, Gene Expression Regulation, Circadian Clocks, Animals, Humans, Protein Interaction Maps, Signal Transduction, Transcription Factors
Epigenomics, Transcriptional Activation, Ubiquitination, DNA Methylation, Circadian Rhythm, Histones, Gene Expression Regulation, Circadian Clocks, Animals, Humans, Protein Interaction Maps, Signal Transduction, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 96 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
