<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sixty years after Hershey and Chase showed that nucleic acid is the major component of phage particles that is ejected into cells, we still do not fully understand how the process occurs. Advances in electron microscopy have revealed the structure of the condensed DNA confined in a phage capsid, and the mechanisms and energetics of packaging a phage genome are beginning to be better understood. Condensing DNA subjects it to high osmotic pressure, which has been suggested to provide the driving force for its ejection during infection. However, forces internal to a phage capsid cannot, alone, cause complete genome ejection into cells. Here, we describe the structure of the DNA inside mature phages and summarize the current models of genome ejection, both in vitro and in vivo.
570, Virus Uncoating, DNA, Viral, 610, Bacteriophages, Genome, Viral, Models, Biological
570, Virus Uncoating, DNA, Viral, 610, Bacteriophages, Genome, Viral, Models, Biological
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 133 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |