
doi: 10.1038/nrm1647
pmid: 15956979
The natural RNA enzymes catalyse phosphate-group transfer and peptide-bond formation. Initially, metal ions were proposed to supply the chemical versatility that nucleotides lack. In the ensuing decades, structural and mechanistic studies have substantially altered this initial viewpoint. Whereas self-splicing ribozymes clearly rely on essential metal-ion cofactors, self-cleaving ribozymes seem to use nucleotide bases for their catalytic chemistry. Despite the overall differences in chemical features, both RNA and protein enzymes use similar catalytic strategies.
Base Sequence, Protein Biosynthesis, RNA Splicing, Molecular Sequence Data, Animals, Nucleic Acid Conformation, RNA, Catalytic, Ribosomes, Catalysis, Introns
Base Sequence, Protein Biosynthesis, RNA Splicing, Molecular Sequence Data, Animals, Nucleic Acid Conformation, RNA, Catalytic, Ribosomes, Catalysis, Introns
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 295 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
