
doi: 10.1038/nrd1874
pmid: 16264434
Combinatorial pharmacogenetics seeks to characterize genetic variations that affect reactions to potentially toxic agents within the complex metabolic networks of the human body. Polymorphic drug-metabolizing enzymes are likely to represent some of the most common inheritable risk factors associated with common 'disease' phenotypes, such as adverse drug reactions. The relatively high concordance between polymorphisms in drug-metabolizing enzymes and clinical phenotypes indicates that research into this class of polymorphisms could benefit patients in the near future. Characterization of other genes affecting drug disposition (absorption, distribution, metabolism and elimination) will further enhance this process. As with most questions concerning biological systems, the complexity arises out of the combinatorial magnitude of all the possible interactions and pathways. The high-dimensionality of the resulting analysis problem will often overwhelm traditional analysis methods. Novel analysis techniques, such as multifactor dimensionality reduction, offer viable options for evaluating such data.
Risk, Polymorphism, Genetic, Cytochrome P-450 Enzyme System, Drug-Related Side Effects and Adverse Reactions, Pharmaceutical Preparations, Pharmacogenetics, Inactivation, Metabolic, Animals, Humans
Risk, Polymorphism, Genetic, Cytochrome P-450 Enzyme System, Drug-Related Side Effects and Adverse Reactions, Pharmaceutical Preparations, Pharmacogenetics, Inactivation, Metabolic, Animals, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 112 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
