Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Protocolsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Protocols
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Protocols
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In vivo models of proliferative vitreoretinopathy

Authors: David R. Hinton; Rajat Agrawal; Jing Z Cui; Stephen J. Ryan; Christine Spee; Shikun He;

In vivo models of proliferative vitreoretinopathy

Abstract

We outline current in vitro and in vivo models for experimental proliferative vitreoretinopathy (PVR) and provide a detailed protocol of our standardized in vivo PVR model. PVR is the leading cause of failed surgical procedures for the correction of rhegmatogenous retinal detachment. The pathogenesis of this multifactorial condition is still not completely understood. Experimental models for PVR help us understand the factors that play a role in the pathogenesis of the disease process in a controlled manner and allow for reproducible preclinical assessment of novel therapeutic interventions. We describe a cell injection model in detail that uses homologous retinal pigment epithelial (RPE) cell cultures to induce PVR over a 2-8 week period.

Keywords

Models, Animal, Vitreoretinopathy, Proliferative, Animals, Rabbits, Fluorescein Angiography, Pigment Epithelium of Eye, Cells, Cultured, Tomography, Optical Coherence, Injections

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?