
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )doi: 10.1038/nprot.2007.4
pmid: 17401340
We outline current in vitro and in vivo models for experimental proliferative vitreoretinopathy (PVR) and provide a detailed protocol of our standardized in vivo PVR model. PVR is the leading cause of failed surgical procedures for the correction of rhegmatogenous retinal detachment. The pathogenesis of this multifactorial condition is still not completely understood. Experimental models for PVR help us understand the factors that play a role in the pathogenesis of the disease process in a controlled manner and allow for reproducible preclinical assessment of novel therapeutic interventions. We describe a cell injection model in detail that uses homologous retinal pigment epithelial (RPE) cell cultures to induce PVR over a 2-8 week period.
Models, Animal, Vitreoretinopathy, Proliferative, Animals, Rabbits, Fluorescein Angiography, Pigment Epithelium of Eye, Cells, Cultured, Tomography, Optical Coherence, Injections
Models, Animal, Vitreoretinopathy, Proliferative, Animals, Rabbits, Fluorescein Angiography, Pigment Epithelium of Eye, Cells, Cultured, Tomography, Optical Coherence, Injections
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 105 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
