
pmid: 17406308
Comparative genomics is an important and expanding field of research, and the genome-wide comparison of the chromosome constitution of different species makes a major contribution to this field. Cross-species chromosome painting is a powerful technique for establishing chromosome homology maps, defining the sites of chromosome fusions and fissions, investigating chromosome rearrangements during evolution and constructing ancestral karyotypes. Here the protocol for cross-species chromosome painting is presented. It includes sections on cell culture and metaphase preparation, labeling of chromosome-specific DNA, fluorescent in situ hybridization (chromosome painting) and image analysis. Cell culture and metaphase preparation can take between 1 and 2 wk depending on the cell culture. Labeling of chromosome-specific DNA is completed in 1 d. Fluorescent in situ hybridization can be completed in a maximum of 4 d.
Species Specificity, Animals, DNA, Genomics, Cells, Cultured, Chromosome Painting
Species Specificity, Animals, DNA, Genomics, Cells, Cultured, Chromosome Painting
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
