<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 1721.1/97628
The usual way to reveal properties of an unknown quantum state, given many copies of a system in that state, is to perform measurements of different observables and to analyze the measurement results statistically. Here we show that the unknown quantum state can play an active role in its own analysis. In particular, given multiple copies of a quantum system with density matrix ��, then it is possible to perform the unitary transformation e^{-i��t}. As a result, one can create quantum coherence among different copies of the system to perform quantum principal component analysis, revealing the eigenvectors corresponding to the large eigenvalues of the unknown state in time exponentially faster than any existing algorithm.
9 pages, Plain TeX
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 945 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |