Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Neuroscience
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A developmental switch in the signaling cascades for LTP induction

Authors: Alison L. Barth; Robert C. Malenka; David Stellwagen; Hiroki Yasuda;

A developmental switch in the signaling cascades for LTP induction

Abstract

Long-term potentiation (LTP) is thought to be critically involved not only in learning and memory, but also during the activity-dependent developmental phases of neural circuit formation and refinement. Whether the mechanisms underlying LTP change during this phase of postnatal development, however, is unknown. We report here that, unlike LTP in the more mature CA1 region of the hippocampus, LTP in neonatal rodent hippocampus (<9 postnatal days,

Related Organizations
Keywords

Mitogen-Activated Protein Kinase 1, Neurons, Dose-Response Relationship, Drug, Colforsin, Long-Term Potentiation, Intracellular Signaling Peptides and Proteins, Excitatory Postsynaptic Potentials, Cyclic AMP-Dependent Protein Kinases, Hippocampus, Peptide Fragments, Rats, Animals, Newborn, Calcium-Calmodulin-Dependent Protein Kinases, Mutation, Neural Pathways, Animals, Enzyme Inhibitors, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Carrier Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    279
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
279
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?