
doi: 10.1038/nmeth1156
pmid: 18165802
A new generation of non-Sanger-based sequencing technologies has delivered on its promise of sequencing DNA at unprecedented speed, thereby enabling impressive scientific achievements and novel biological applications. However, before stepping into the limelight, next-generation sequencing had to overcome the inertia of a field that relied on Sanger-sequencing for 30 years.
Sequence Analysis, DNA, Biology, Algorithms, Forecasting, Oligonucleotide Array Sequence Analysis
Sequence Analysis, DNA, Biology, Algorithms, Forecasting, Oligonucleotide Array Sequence Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
