
Traditionally, crystallographic analysis of macromolecules has depended on large, well-ordered crystals, which often require significant effort to obtain. Even sizable crystals sometimes suffer from pathologies that render them inappropriate for high-resolution structure determination. Here we show that fragmentation of large, imperfect crystals into microcrystals or nanocrystals can provide a simple path for high-resolution structure determination by the cryoEM method MicroED and potentially by serial femtosecond crystallography.
Models, Molecular, Technology, Crystallography, Protein Conformation, Cryoelectron Microscopy, Molecular, Proteins, Biological Sciences, Crystallography, X-Ray, Medical and Health Sciences, Article, Models, X-Ray, Developmental Biology
Models, Molecular, Technology, Crystallography, Protein Conformation, Cryoelectron Microscopy, Molecular, Proteins, Biological Sciences, Crystallography, X-Ray, Medical and Health Sciences, Article, Models, X-Ray, Developmental Biology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 150 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
