Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Medicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Medicine
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Medicine
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1038/nm.3...
Article . 2013 . Peer-reviewed
Data sources: SNSF P3 Database
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thymic stromal lymphopoietin–elicited basophil responses promote eosinophilic esophagitis

Authors: Jonathan M. Spergel; Kudakwashe R. Chikwava; Hakon Hakonarson; Gary W. Falk; Chao Zhou; Patrick M. A. Sleiman; Masato Kubo; +25 Authors

Thymic stromal lymphopoietin–elicited basophil responses promote eosinophilic esophagitis

Abstract

Eosinophilic esophagitis (EoE) is a food allergy-associated inflammatory disease characterized by esophageal eosinophilia. Current management strategies for EoE are nonspecific, and thus there is a need to identify specific immunological pathways that could be targeted to treat this disease. EoE is associated with polymorphisms in the gene that encodes thymic stromal lymphopoietin (TSLP), a cytokine that promotes allergic inflammation, but how TSLP might contribute to EoE disease pathogenesis has been unclear. Here, we describe a new mouse model of EoE-like disease that developed independently of IgE, but was dependent on TSLP and basophils, as targeting TSLP or basophils during the sensitization phase limited disease. Notably, therapeutic TSLP neutralization or basophil depletion also ameliorated established EoE-like disease. In human subjects with EoE, we observed elevated TSLP expression and exaggerated basophil responses in esophageal biopsies, and a gain-of-function TSLP polymorphism was associated with increased basophil responses in patients with EoE. Together, these data suggest that the TSLP-basophil axis contributes to the pathogenesis of EoE and could be therapeutically targeted to treat this disease.

Keywords

Adult, Male, Mice, Inbred BALB C, 610, Antibodies, Monoclonal, Eosinophilic Esophagitis, Immunoglobulin E, Basophils, Eosinophils, Mice, Inbred C57BL, Disease Models, Animal, Mice, Esophagus, Thymic Stromal Lymphopoietin, Neutralization Tests, Animals, Cytokines, Humans, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    369
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
369
Top 1%
Top 1%
Top 0.1%
Green
bronze