Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2002
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PP1 binds Sara and negatively regulates Dpp signaling in Drosophila melanogaster

Authors: Bennett, Daimark; Alphey, Luke;

PP1 binds Sara and negatively regulates Dpp signaling in Drosophila melanogaster

Abstract

In signaling involving the transforming growth factor-beta (TGF-beta) superfamily of proteins, ligand binding brings the constitutively active type II receptor kinase into close proximity to its substrate, the type I receptor kinase, which it then activates by phosphorylation. The type I receptor kinase in turn phosphorylates one of the Smad family of transcription factors, which translocates to the nucleus and regulates gene expression. Smads are recruited to the receptor complex by an anchor protein, SARA (Smad anchor for receptor activation). Although several protein kinases in this pathway were known, including the receptors themselves, the relevant phosphatases had not previously been identified. Here we report the isolation of a Drosophila melanogaster homolog of SARA (Sara) in a screen for proteins that bind the catalytic subunit of type 1 serine/threonine protein phosphatase (PP1c). We identified a PP1c-binding motif in Sara, disruption of which reduced the ability of Sara to bind PP1c. Expression of this non-PP1c-binding mutant resulted in hyperphosphorylation of the type I receptor and stimulated expression of a target of TGF-beta signaling. Reducing PP1c activity enhanced the increase in the basal level of expression of genes responsive to Dpp (Decapentaplegic) caused by ectopic expression of the type II receptor Punt. Together these data suggest that PP1c is targeted to Dpp receptor complexes by Sara, where it acts as a negative regulator of Dpp signaling by affecting the phosphorylation state of the type I receptor.

Related Organizations
Keywords

Binding Sites, Activin Receptors, Type II, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Receptor, Transforming Growth Factor-beta Type I, Gene Expression Regulation, Developmental, Nerve Tissue Proteins, Protein Serine-Threonine Kinases, Animals, Genetically Modified, Drosophila melanogaster, Protein Phosphatase 1, Phosphoprotein Phosphatases, Animals, Drosophila Proteins, Humans, Amino Acid Sequence, Phosphorylation, Carrier Proteins, Activin Receptors, Type I, Receptors, Transforming Growth Factor beta

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!