Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Genetics
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2002
versions View all 6 versions
addClaim

Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome

Authors: Piper Hanley, Karen; Hearn, Tom; Renforth, Glenn L.; Spalluto, Cosma; Hanley, Neil A.; Piper, Karen; Brickwood, Sarah; +7 Authors

Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome

Abstract

Alström syndrome (OMIM 203800) is an autosomal recessive disease, characterized by cone-rod retinal dystrophy, cardiomyopathy and type 2 diabetes mellitus, that has been mapped to chromosome 2p13 (refs 1-5). We have studied an individual with Alström syndrome carrying a familial balanced reciprocal chromosome translocation (46, XY,t(2;11)(p13;q21)mat) involving the previously implicated critical region. We postulated that this individual was a compound heterozygote, carrying one copy of a gene disrupted by the translocation and the other copy disrupted by an intragenic mutation. We mapped the 2p13 breakpoint on the maternal allele to a genomic fragment of 1.7 kb which contains exon 4 and the start of exon 5 of a newly discovered gene (ALMS1); we detected a frameshift mutation in the paternal copy of the gene. The 12.9-kb transcript of ALMS1 encodes a protein of 4,169 amino acids whose function is unknown. The protein contains a large tandem-repeat domain comprising 34 imperfect repetitions of 47 amino acids. We have detected six different mutations (two nonsense and four frameshift mutations causing premature stop codons) in seven families, confirming that ALMS1 is the gene underlying Alström syndrome. We believe that ALMS1 is the first human disease gene characterized by autosomal recessive inheritance to be identified as a result of a balanced reciprocal translocation.

Country
United Kingdom
Keywords

Male, genetics: Diabetes Mellitus, Type 2, genetics: Diabetes Mellitus, Molecular Sequence Data, 610, Sequence Homology, Translocation, genetics: Chromosomes, Human, Pair 2, Genes, Recessive, Fluorescence, Translocation, Genetic, genetics: Chromosomes, Genetic, 616, Recessive, Humans, Amino Acid Sequence, Pair 11, In Situ Hybridization, In Situ Hybridization, Fluorescence, Sequence Homology, Amino Acid, Chromosomes, Human, Pair 11, Retinal Degeneration, Syndrome, genetics: Chromosomes, Human, Pair 11, genetics: Retinal Degeneration, Amino Acid, Genes, Diabetes Mellitus, Type 2, Tandem Repeat Sequences, Chromosomes, Human, Pair 2, Pair 2, Mutation, genetics: Cardiomyopathies, Female, Cardiomyopathies, Type 2, Human

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    279
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
279
Top 1%
Top 1%
Top 1%
bronze