
Population genetics is central to our understanding of human variation, and by linking medical and evolutionary themes, it enables us to understand the origins and impacts of our genomic differences. Despite current limitations in our knowledge of the locations, sizes and mutational origins of structural variants, our characterization of their population genetics is developing apace, bringing new insights into recent human adaptation, genome biology and disease. We summarize recent dramatic advances, describe the diverse mutational origins of chromosomal rearrangements and argue that their complexity necessitates a re-evaluation of existing population genetic methods.
Gene Rearrangement, Genetics, Population, Genome, Human, Mutation, Gene Dosage, Genetic Variation, Humans, Selection, Genetic, Linkage Disequilibrium
Gene Rearrangement, Genetics, Population, Genome, Human, Mutation, Gene Dosage, Genetic Variation, Humans, Selection, Genetic, Linkage Disequilibrium
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 181 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
