Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2005
MPG.PuRe
Article . 2005
Data sources: MPG.PuRe
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcription control reprogramming in genetic backup circuits

Authors: Kafri, R.; Bar-Even, A.; Pilpel, Y.;

Transcription control reprogramming in genetic backup circuits

Abstract

A key question in molecular genetics is why severe mutations often do not result in a detectably abnormal phenotype. This robustness was partially ascribed to redundant paralogs that may provide backup for one another in case of mutation. Mining mutant viability and mRNA expression data in Saccharomyces cerevisiae, we found that backup was provided predominantly by paralogs that are expressed dissimilarly in most growth conditions. We considered that this apparent inconsistency might be resolved by a transcriptional reprogramming mechanism that allows the intact paralog to rescue the organism upon mutation of its counterpart. We found that in wild-type cells, partial coregulation across growth conditions predicted the ability of paralogs to alter their transcription patterns and to provide backup for one another. Notably, the sets of regulatory motifs that controlled the paralogs with the most efficient backup activity deliberately overlapped only partially; paralogs with highly similar or dissimilar sets of motifs had suboptimal backup activity. Such an arrangement of partially shared regulatory motifs reconciles the differential expression of paralogs with their ability to back each other up.

Related Organizations
Keywords

Kinetics, Transcription, Genetic, RNA, Messenger, Saccharomyces cerevisiae

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    174
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
174
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!