
doi: 10.1038/nchem.654
pmid: 20489710
Although metal-organic frameworks are extensive in number and have found widespread applications, there remains a need to add complexity to their structures in a controlled manner. It is inevitable that frameworks capable of dynamics will be required. However, as in other extended structures, when they are flexible, they fail. We propose that mechanically interlocked molecules be inserted covalently into the rigid framework backbone such that they are mounted as integrated components, capable of dynamics, without compromising the fidelity of the entire system. We have coined the term 'robust dynamics' to describe constructs where the repeated dynamics of one entity does not affect the integrity of any others linked to it. The implication of this concept for dynamic molecules, whose performance has the disadvantages of random motion, is to bring them to a standstill in three-dimensional extended structures and thus significantly enhance their order, and ultimately their coherence and performance.
Models, Chemical, Organometallic Compounds, Molecular Dynamics Simulation, Crystallography, X-Ray
Models, Chemical, Organometallic Compounds, Molecular Dynamics Simulation, Crystallography, X-Ray
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 230 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
