
With the advent of clustered, regularly interspaced, short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) technology, researchers can construct gene drives that can bias the inheritance of edited alleles to alter entire populations. As demonstrated with the mutagenic chain reaction in Drosophila4, the CRISPR-Cas9 system can propagate genomic modification together with the genome-editing machinery itself. Although gene drives might have the potential to control insect-borne diseases and agricultural pests, substantial concerns have been raised over unanticipated ecological consequences as a result of drive use. Here we report the development of a potential Cas9-based gene drive 'brake' that remains inert in a wild-type genome but is activated by Cas9 to both cleave the genomic cas9 sequence and to convert an incoming cas9 allele into a brake. This means that the propagation of the brake is favored in a cas9-carrying population.
Male, 570, RNA, Guide, CRISPR-Cas Systems, Endonucleases, Animals, Genetically Modified, Genetic Techniques, Animals, Drosophila, Female, Transgenes, CRISPR-Cas Systems
Male, 570, RNA, Guide, CRISPR-Cas Systems, Endonucleases, Animals, Genetically Modified, Genetic Techniques, Animals, Drosophila, Female, Transgenes, CRISPR-Cas Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
