
Exoplanets are now being discovered in profusion. However, to understand their character requires spectral models and data. These elements of remote sensing can yield temperatures, compositions, and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are achieved. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has oftimes lagged ambition. I summarize the most productive, and at times novel, methods employed to probe exoplanet atmospheres, highlight some of the most interesting results obtained, and suggest various broad theoretical topics in which further work could pay significant dividends.
Published in Nature, September 18, 2014, as an Insight Review
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 78 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
