Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunomodulation of peritoneal macrophages by granulocyte-macrophage colony-stimulating factor in humans

Authors: Mercedes Fernández de Castro; Rafael Selgas; Angel Corbí; Francisco Vara; M. Auxiliadora Bajo; Cristina Cárcamo; Carlos Jiménez; +1 Authors

Immunomodulation of peritoneal macrophages by granulocyte-macrophage colony-stimulating factor in humans

Abstract

Colony-stimulating factors are growth factors which induce differentiation of the hematopoietic stem cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates proliferation and improves functions of neutrophils and monocyte/macrophages. A macrophage submesothelial stratum has been suggested to constitute the first line of peritoneal defense. We have tested whether intraperitoneally administered GM-CSF could increase the number and activation of peritoneal macrophages in peritoneal dialysis patients. Eight stable patients injected 17 micrograms of GM-CSF in each of their four daily CAPD bags over three days. The clinical status, the peritoneal effluent and peripheral blood cell count, membrane receptor expression, phagocytosis activity and cytokine levels were monitored at days 0, 1, 3, 10 and 28. GM-CSF administration caused a large increase in peritoneal macrophage number (89-fold mean increase after 72 hr), returning to baseline seven days after withdrawal. GM-CSF triggered an increase in the expression of CD11b/CD18 (CR3) and its counterreceptor CD54, indicating the cellular progression into a more activated state. Both the number of phagocytic cells (55 +/- 15% to 83 +/- 10%, P < 0.05) and the phagocytic index (137 +/- 29 to 255 +/- 61, P < 0.01) were also augmented. Peritoneal effluent cytokine-chemokine levels demonstrated an increase in IL-6 and MCP-1 levels while TNF-alpha, IL-1, IL-8, MIP-1 alpha and RANTES were not significantly altered. GM-CSF administration did not affect the peritoneal transport of water or solutes. Minor side-effects were registered in two patients. In conclusion, intraperitoneal GM-CSF causes a marked and transient recruitment of primed macrophages into the peritoneum without inducing inflammatory parameters. GM-CSF should improve the peritoneal defensive capacity through potentiation of the effector functions of resident and newly-recruited macrophages.

Keywords

Adult, Male, Granulocyte-Macrophage Colony-Stimulating Factor, Macrophage Activation, Middle Aged, Immunophenotyping, Peritoneal Dialysis, Continuous Ambulatory, Nephrology, Macrophages, Peritoneal, Cytokines, Humans, Female, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
hybrid