
doi: 10.1038/ki.1996.469
pmid: 8914020
The genomic action of calcitriol is mediated through the interaction of the calcitriol receptor (VDR) with vitamin D response elements (VDREs) of the target genes. We have shown that the interaction of VDRs with VDREs is inhibited by uremic toxins. We hypothesize that uremic toxins form Schiff bases with the lysine residues of the VDR DNA binding domain and inhibit the VDR interaction with the VDRE. In this study, pyridoxal 5'-phosphate was used as a probe to test Schiff base formation as the inhibitory mechanism, since it forms Schiff bases with steroid receptors. Pyridoxal 5'-phosphate inhibited the VDR binding to the VDREs and chemically modified the DNA binding domain of the VDR in vitro. The inhibition was reversed when pyridoxal 5'-phosphate was preincubated with lysine. Further, this chemical agent also blocked the production of chloramphenicol acetyltransferase (CAT) enzyme induced by calcitriol in cells transfected with a constructed VDRE attached to a CAT reporter gene. This finding is consistent with the hypothesis that pyridoxal 5'-phosphate could interact with the VDR and impair its DNA binding within cells. Since induction of 24-hydroxylase synthesis is a receptor mediated process, we studied the effect of pyridoxal 5'-phosphate on the synthesis of renal 24-hydroxylase in rats. When pyridoxal 5'-phosphate was infused to rats, renal 24-hydroxylase activity was suppressed, consequently, degradation of calcitriol was also reduced in these animals. Thus, chemicals capable of Schiff base formation potentially could alter the physiological function of VDR and calcitriol.
25-Hydroxyvitamin D3 1-alpha-Hydroxylase, Chloramphenicol O-Acetyltransferase, Electrophoresis, Sialoglycoproteins, Recombinant Proteins, Rats, Nephrology, Pyridoxal Phosphate, Animals, Cytokines, Humans, Receptors, Calcitriol, Osteopontin, Intestinal Mucosa, Schiff Bases
25-Hydroxyvitamin D3 1-alpha-Hydroxylase, Chloramphenicol O-Acetyltransferase, Electrophoresis, Sialoglycoproteins, Recombinant Proteins, Rats, Nephrology, Pyridoxal Phosphate, Animals, Cytokines, Humans, Receptors, Calcitriol, Osteopontin, Intestinal Mucosa, Schiff Bases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
