Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Perinatol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Perinatology
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Neonatal nasal intermittent positive pressure ventilation efficacy and lung pressure transmission

Authors: A, Mukerji; J, Belik;

Neonatal nasal intermittent positive pressure ventilation efficacy and lung pressure transmission

Abstract

The objective of this study was to evaluate carbon dioxide (CO2) clearance, delivered pressures and tidal volume (VT) during neonatal nasal intermittent positive pressure ventilation (NIPPV) with two commonly used interfaces.A neonatal lung model, with either short binasal prongs (SBP) or a small caliber nasal cannula (RAM) interface, was tested over a range of clinically relevant settings. A fixed amount of CO2 was infused and the fraction remaining in the lung 100 s postinfusion was measured. Pressure transmission to the lung and VT was measured at the level of the trachea.CO2 elimination was directly proportional to the inspiratory pressure during NIPPV. At peak pressures of 22 to 34 cm H2O, CO2 clearance was greater (P<0.001) with SBP as compared with RAM. Relative to the set ventilator parameters, a substantial pressure dampening effect was documented at the lung level, which was significantly lower with RAM when compared with SBP (2.8% (0.2) versus 11.9% (1.5), P<0.0001). CO2 elimination was dependent on VT and effective despite only a small fraction of physiological VT (maximum delivered VT%: SBP 15.5 (0.7) versus RAM 6.1 (1.4), P<0.0001).NIPPV promotes CO2 elimination even at low transmitted airway pressures, but less effective with RAM as compared with SBP. CO2 elimination despite small VT suggests that NIPPV may depend on a non-conventional gas-exchange mechanism.

Keywords

Ventilators, Mechanical, Pulmonary Gas Exchange, Ventilator-Induced Lung Injury, Infant, Newborn, Tidal Volume, Humans, Carbon Dioxide, Manikins, Infant, Newborn, Diseases, Intermittent Positive-Pressure Ventilation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
bronze