Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cerebral ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adrenergic and Cholinergic Receptors of Cerebral Microvessels

Authors: S I, Harik; V K, Sharma; J R, Wetherbee; R H, Warren; S P, Banerjee;

Adrenergic and Cholinergic Receptors of Cerebral Microvessels

Abstract

The presence of α- and β-adrenergic and muscarinic cholinergic receptors in cerebral microvessels of the rat and pig was assessed by ligand binding techniques. The results demonstrate the presence of specific binding to α2- and β-adrenergic receptors but no appreciable specific binding to α1-adrenergic or muscarinic cholinergic receptors. β-Adrenergic receptors of pig cerebral microvessels are similar to those of the brain and other organs in their binding characteristics to the tritiated ligand and in their stereospecificity of binding to the biologically active isomers of β-adrenergic agonists. Further evidence derived from the differential potency of binding displacement by the various β-adrenergic agonists and selective β1- and β2-adrenergic antagonists indicates that β-adrenergic receptors of pig cerebral microvessels are mostly of the β2-subtype.

Related Organizations
Keywords

Male, Swine, Microcirculation, Brain, Rats, Inbred Strains, Arteries, Binding, Competitive, Butoxamine, Rats, Receptors, Adrenergic, Arterioles, Norepinephrine, Isomerism, Dihydroalprenolol, Animals, Female, Receptors, Cholinergic, Practolol

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    108
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
108
Top 10%
Top 1%
Top 10%
bronze