
How easy is it to acquire an organelle? How easy is it to lose one? These questions underpin the current debate about the evolution of the plastid—that is, chloroplast—the organelle of photosynthesis in eukaryotic cells. The origin of the plastid has been traced to an endosymbiosis between a eukaryotic host cell and a cyanobacterial symbiont, the latter gradually ceding genetic control to the former through endosymbiotic gene transfer (EGT). The resulting organelle now relies for its biogenesis and function on the expression of a small set of genes retained in the shrunken plastid genome, as well as a much larger set of transferred nuclear genes encoding proteins synthesized in the cytosol and imported into the organelle. This scenario accounts for the so‐called primary plastids in green algae and their land plant relatives, in red algae and in glaucophytes, which together comprise Plantae (or Archaeplastida)—one of five or six recognized eukaryotic supergroups (Adl et al , 2005). In other algal types, plastids are ‘second‐hand’—they have been acquired not by taking up a cyanobacterium, but by taking up a …
Organelles, Eukaryota, Plastids, Symbiosis, Biological Evolution
Organelles, Eukaryota, Plastids, Symbiosis, Biological Evolution
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
