
Mammalian evolution exhibits extraordinary acceleration in phenotypic complexity while displaying genetic conservation. Indeed, protein-coding genes are 90% identical between mice and human, and the question arises what might be the mechanisms by which phenotypic complexity increases while the number of proteins does not? An interesting possibility is that the increase in regulatory complexity, as reflected in a more sophisticated spatio-temporal regulation on gene expression, could generate more diverse combinations of proteins and a greater number of distinct phenotypes. Importantly, unlike protein coding genes, long noncoding RNAs (lncRNA) exhibit only 50% similarity between mice and human.1 Are these RNA species involved in such regulation?
Editorial, Corrigendum
Editorial, Corrigendum
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
