Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2001
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cancer predisposition caused by elevated mitotic recombination in Bloom mice

Authors: G, Luo; I M, Santoro; L D, McDaniel; I, Nishijima; M, Mills; H, Youssoufian; H, Vogel; +2 Authors

Cancer predisposition caused by elevated mitotic recombination in Bloom mice

Abstract

Bloom syndrome is a disorder associated with genomic instability that causes affected people to be prone to cancer. Bloom cell lines show increased sister chromatid exchange, yet are proficient in the repair of various DNA lesions. The underlying cause of this disease are mutations in a gene encoding a RECQ DNA helicase. Using embryonic stem cell technology, we have generated viable Bloom mice that are prone to a wide variety of cancers. Cell lines from these mice show elevations in the rates of mitotic recombination. We demonstrate that the increased rate of loss of heterozygosity (LOH) resulting from mitotic recombination in vivo constitutes the underlying mechanism causing tumour susceptibility in these mice.

Keywords

Adenosine Triphosphatases, Recombination, Genetic, Base Sequence, RecQ Helicases, DNA Helicases, Loss of Heterozygosity, Mitosis, Neoplasms, Experimental, Mice, Mutant Strains, Disease Models, Animal, Meiosis, Mice, Phenotype, Animals, Humans, Alleles, Bloom Syndrome, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    359
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
359
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!