Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1997
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A synthetic peptide ligase

Authors: K, Severin; D H, Lee; A J, Kennan; M R, Ghadiri;

A synthetic peptide ligase

Abstract

The preparation of synthetic molecules showing the remarkable efficiencies characteristic of natural biopolymer catalysts remains a formidable challenge for chemical biology. Although significant advances have been made in the understanding of protein structure and function, the de novo construction of such systems remains elusive. Re-engineered natural enzymes and catalytic antibodies, possessing tailored binding pockets with appropriately positioned functional groups, have been successful in catalysing a number of chemical transformations, sometimes with impressive efficiencies. But efforts to produce wholly synthetic catalytic peptides have typically resulted in compounds with questionable structural stability, let alone reactivity. Here we describe a 33-residue synthetic peptide, based on the coiled-coil structural motif, which efficiently catalyses the condensation of two shorter peptide fragments with high sequence- and diastereoselectivity. Depending on the substrates used, we observe rate enhancements of tenfold to 4,100-fold over the background, with catalytic efficiencies in excess of 10(4). These results augur well for the rational design of functional peptides.

Related Organizations
Keywords

Ligases, Circular Dichroism, Molecular Sequence Data, Amino Acid Sequence, Peptides, Catalysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!