
doi: 10.1038/39556
pmid: 9338780
The preparation of synthetic molecules showing the remarkable efficiencies characteristic of natural biopolymer catalysts remains a formidable challenge for chemical biology. Although significant advances have been made in the understanding of protein structure and function, the de novo construction of such systems remains elusive. Re-engineered natural enzymes and catalytic antibodies, possessing tailored binding pockets with appropriately positioned functional groups, have been successful in catalysing a number of chemical transformations, sometimes with impressive efficiencies. But efforts to produce wholly synthetic catalytic peptides have typically resulted in compounds with questionable structural stability, let alone reactivity. Here we describe a 33-residue synthetic peptide, based on the coiled-coil structural motif, which efficiently catalyses the condensation of two shorter peptide fragments with high sequence- and diastereoselectivity. Depending on the substrates used, we observe rate enhancements of tenfold to 4,100-fold over the background, with catalytic efficiencies in excess of 10(4). These results augur well for the rational design of functional peptides.
Ligases, Circular Dichroism, Molecular Sequence Data, Amino Acid Sequence, Peptides, Catalysis
Ligases, Circular Dichroism, Molecular Sequence Data, Amino Acid Sequence, Peptides, Catalysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 133 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
