Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1997
versions View all 3 versions
addClaim

Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic

Authors: Baorto, D; Gao, Z; Malaviya, R; Dustin, M; van der Merwe, A; Lublin, D; Abraham, SN;

Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic

Abstract

Strains of Escherichia coli persist within the human gut as normal commensals, but are frequent pathogens and can cause recurrent infection. Here we show that, in contrast to E. coli subjected to opsonic interactions stimulated by the host's immune response, E. coli that bind to the macrophage surface exclusively through the bacterial lectin FimH can survive inside the cell following phagocytosis. This viability is largely due to the attenuation of intracellular free-radical release and of phagosome acidification during FimH-mediated internalization, both of which are triggered by antibody-mediated internalization. This different processing of non-opsonized bacteria is supported by morphological evidence of tight-fitting phagosomes compared with looser, antibody-mediated phagosomes. We propose that non-opsonized FimH-expressing E. coli co-opt internalization of lipid-rich microdomains following binding to the FimH receptor, the glycosylphosphatidylinositol-linked protein CD48, because (1) the sterol-binding agents filipin, nystatin and methyl beta-cyclodextrin specifically block FimH-mediated internalization; (2) CD48 and the protein caveolin both accumulate on macrophage membranes surrounding bacteria; and (3) antibodies against CD48 inhibit FimH-mediated internalization. Our findings bring the traditionally extracellular E. coli into the realm of opportunistic intracellular parasitism and suggest how opportunistic infections with FimH-expressing enterobacteria could occur in a setting deprived of opsonizing antibodies.

Country
United Kingdom
Related Organizations
Keywords

Adhesins, Escherichia coli, Mice, Inbred BALB C, Free Radicals, Macrophages, CD48 Antigen, Opsonin Proteins, Bacterial Adhesion, Mice, Phagocytosis, Antigens, CD, Lectins, Escherichia coli, Animals, Fimbriae Proteins, Adhesins, Bacterial, Cells, Cultured, Respiratory Burst

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    270
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
270
Top 10%
Top 1%
Top 1%
Green