
AbstractWe present a new model to explain stellar mass distributions in different stellar environments. In our model, the protostar phase is terminated, when the protostellar core embedded in a molecular clump experiences a collision with another star or protostellar clump, which ejects the protostellar core from its parent clump. Such dynamical interactions are necessarily important, if stars preferentially form in dense clusters. We show that, in a simple model, the initial mass function approaches a simple, asymptotic form, which strongly resembles observed mass functions. The model has important consequences for star formation in different environments. We also discuss the implications of the model for our understanding of pre-main-sequence stellar evolution.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
