
doi: 10.1038/357655a0
pmid: 1614514
Initial stages in the Rhizobium-legume symbiosis can be thought of as a reciprocal molecular conversation: transmission of a gene inducer from legume host to bacterium, with ensuing bacterial synthesis of a morphogen that is transmitted to the plant, switching the developmental fate of the legume root. These signal molecules have a key role in determining bacterium-host specificity and the purified Nod factor compounds provide useful new tools to probe plant cell function.
Plants, Medicinal, Bacterial Proteins, Carbohydrate Sequence, Genes, Bacterial, Molecular Sequence Data, Fabaceae, Symbiosis, Rhizobium, Signal Transduction
Plants, Medicinal, Bacterial Proteins, Carbohydrate Sequence, Genes, Bacterial, Molecular Sequence Data, Fabaceae, Symbiosis, Rhizobium, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 561 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
