Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Naturearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2001 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Nature
Article . 2001
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Motor-cortical activity in tetraplegics

Authors: Shy Shoham; Richard A. Normann; E. M. Maynard; Eric Halgren;

Motor-cortical activity in tetraplegics

Abstract

It may eventually be feasible to reconstruct voluntary motor activity in the paralysed. Paralysed patients may benefit from the development of an implantable brain–computer interface device that can bypass damaged motor pathways1,2,3. But it is unclear whether chronically de-efferented areas will still be sufficiently excitable to respond to motor attempts4,5 if the motor cortex has been extensively reorganized6,7, and, if they are, whether this excitability is somatotopically organized8,9. Here we use functional magnetic resonance imaging to study brain activity in subjects with spinal-cord injuries while they are executing, or attempting to execute, movements of different limbs. We show that their motor-cortical activation closely follows normal somatotopic organization in the primary and non-primary sensorimotor areas. Our results indicate that any reorganization of the motor system that does occur in these patients does not affect attempt-related activation, and that it should be possible to access voluntary control signals by using a cortical neuroprosthetic.

Related Organizations
Keywords

Adult, Leg, Prostheses and Implants, Somatosensory Cortex, Motor Activity, Hand, Magnetic Resonance Imaging, Cerebellum, Therapy, Computer-Assisted, Humans, Paralysis, Spinal Cord Injuries

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 1%
Top 10%
bronze