Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2000
versions View all 2 versions
addClaim

Retrotransposition of a bacterial group II intron

Authors: B, Cousineau; S, Lawrence; D, Smith; M, Belfort;

Retrotransposition of a bacterial group II intron

Abstract

Self-splicing group II introns may be the evolutionary progenitors of eukaryotic spliceosomal introns, but the route by which they invade new chromosomal sites is unknown. To address the mechanism by which group II introns are disseminated, we have studied the bacterial L1.LtrB intron from Lactococcus lactis. The protein product of this intron, LtrA, possesses maturase, reverse transcriptase and endonuclease enzymatic activities. Together with the intron, LtrA forms a ribonucleoprotein (RNP) complex which mediates a process known as retrohoming. In retrohoming, the intron reverse splices into a cognate intronless DNA site. Integration of a DNA copy of the intron is recombinase independent but requires all three activities of LtrA. Here we report the first experimental demonstration of a group II intron invading ectopic chromosomal sites, which occurs by a distinct retrotransposition mechanism. This retrotransposition process is endonuclease-independent and recombinase-dependent, and is likely to involve reverse splicing of the intron RNA into cellular RNA targets. These retrotranspositions suggest a mechanism by which splicesomal introns may have become widely dispersed.

Keywords

DNA, Bacterial, Lactococcus lactis, Bacterial Proteins, Retroelements, Ribonucleoproteins, Spliceosomes, RNA-Directed DNA Polymerase, Introns

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    127
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
127
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!