Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1987 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Clinical Ultrasound
Article . 1987 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Doppler colour flow imaging

Authors: C R, Merritt;

Doppler colour flow imaging

Abstract

AbstractBy simultaneous processing of frequency, phase, and amplitude information in the backscattered ultrasound signal, new instruments now permit the realtime display of high‐resolution grey scale images of tissue combined with the simultaneous display of flow data from vessels within the scan plane. Doppler Color Flow Imaging, or DCFI, using such processing, permits blood flow direction and relative velocity to be detected and displayed in a color encoded display from throughout the ultrasound image. We have tested a new Doppler color flow imaging system over a period of two years to evaluate the carotid arteries, peripheral arteries and veins, and dialysis fistulas. In the abdomen and pelvis we have imaged blood flow to the liver, spleen, kidneys, uterus and renal transplants. Our experience in over 500 patients leads us to conclude that DCFI has significant advantages over conventional duplex Doppler sonography for blood flow evaluation. For examination of carotid and peripheral vessels, we have found DCFI to permit more rapid assessment in both normal and abnormal states. Areas of vessel narrowing or turbulent flow may be identified rapidly and accurately, and vessel orientation may be determined precisely, allowing accurate calculation of blood flow velocity from Doppler frequency shifts. The system we have used has adequate penetration and sensitivity to allow imaging of hepatic and renal blood flow and is extremely promising as a method of imaging organ perfusion and in the detection of abnormalities of perfusion that accompany disease, such as transplant rejection. Tumor vascularity may also be identified with DCFI, opening the possibilty of additional clinical applications.

Keywords

Neovascularization, Pathologic, Regional Blood Flow, Neoplasms, Color, Humans, Arterial Occlusive Diseases, Signal Processing, Computer-Assisted, Thrombosis, Aneurysm, Blood Flow Velocity, Ultrasonography

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    221
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
221
Top 10%
Top 0.1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!