Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1984 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1984
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Is stepwise sarcomere shortening an artefact?

Authors: ALTRINGHAM JD; LACKTIS JW; BOTTINELLI, ROBERTO;

Is stepwise sarcomere shortening an artefact?

Abstract

A report in 1977 raised the intriguing possibility that sarcomere shortening in muscle may occur in a stepwise fashion, in which episodes of shortening are interrupted by periods of little or no movement. This was taken by its authors to imply the synchronous activity of cross-bridges over a large volume of tissue-behaviour which cannot easily be reconciled with commonly accepted views of muscle contraction. Stepwise shortening has also been reported recently in relaxed muscle fibres on which length changes were externally imposed, and that system has allowed us to define more rigorously the circumstances in which stepwise shortening is observed. Here we report a high correlation between the frequency of 'steps' or 'pauses' and the translation velocity of the fibre past the measuring system, suggesting that stepwise shortening is not a physiological property of muscle but an instrumentation artefact.

Keywords

laser diffraction, 570, Kinetics, stepwise shortening, Muscles, Rana temporaria, 610, Animals, sarcomere shortening, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!