
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1038/306021a0
pmid: 6633656
The functional abilities and parallel architecture of the human visual system are a rich source of ideas about visual processing. Any visual task that we can perform quickly and effortlessly is likely to have a computational solution using a parallel algorithm. Recently, several such parallel algorithms have been found that exploit information implicit in an image to compute intrinsic properties of surfaces, such as surface orientation, reflectance and depth. These algorithms require a computational architecture that has similarities to that of visual cortex in primates.
Depth Perception, Computers, Surface Properties, Visual Perception, Humans, Visual Pathways, Models, Theoretical, Visual Cortex
Depth Perception, Computers, Surface Properties, Visual Perception, Humans, Visual Pathways, Models, Theoretical, Visual Cortex
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 335 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
