Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1980 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1981
versions View all 2 versions
addClaim

Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin

Authors: M, Kessel; F, Klink;

Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin

Abstract

Archaebacteria have been defined as a 'third primary kingdom' of cells in addition to the urkaryotes and the eubacteria. While the latter two correspond approximately to the conventional categories eukaryotes and prokaryotes respectively, the Archaebacteria have up to now comprised four groups of microorganisms: the methanogenic bacteria, the extremely halophilic bacteria and the two thermoacidophilic genera Sulfolobus and Thermoplasma. Based on ribosomal RNA sequence homologies and lipid composition, they apparently form a distinct group. Furthermore they possess or lack typical biochemical markers of both the eukaryotes and the prokaryotes, as well as having unique properties not found elsewhere. Altogether, this indicates that they are not closer to either one of the classical categories. One clear-cut difference between prokaryotes and eukaryotes is the diphtheria toxin reaction, which catalyses the covalent binding of adenosine diphosphate-ribose (ADPR) to the eukaryotic peptide elongation factor EF2 in contrast to the homologous prokaryotic factor EF-G. We report here that diphtheria toxin also catalyses the ADP-riboslation of archaebacterial elongation factors. In this respect, these factors have to be assigned to the EF2 type; we suppose that the ADP-ribosylatable structure arising so early in evolution is of fundamental importance for the elongation process.

Related Organizations
Keywords

Halobacterium, Molecular Weight, Adenosine Diphosphate Ribose, Bacteria, Nucleoside Diphosphate Sugars, Protein Biosynthesis, Diphtheria Toxin, Peptide Elongation Factors, Archaea, Biological Evolution

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    131
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
131
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!