Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1980 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1980
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anisotropy of Young's modulus of bone

Authors: J. Lawrence Katz; J. Lawrence Katz;

Anisotropy of Young's modulus of bone

Abstract

Bonfield and Grynpas have compared their experimental data for Young's modulus of elasticity versus the angle of orientation of the specimen to the long axis of bone with a theoretical curve predicted from a calculation for fibre reinforced materials proposed by Currey. As a result of the poor agreement between the two curves they conclude "... an alternative model is required to account for the dependence of Young's modulus on orientation" (ref. 1). Such an alternative has been under development in my laboratory for the past 8 years (refs 3--7). It is a two-level hierarchical fibre-reinforced composite model which appears to provide a much more suitable description of the behaviour of bone as a fibre-reinforced composite material.

Related Organizations
Keywords

Models, Structural, Animals, Ultrasonics, Bone and Bones, Elasticity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    228
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
228
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?