Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1998 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1998
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mice without myoglobin

Authors: D J, Garry; G A, Ordway; J N, Lorenz; N B, Radford; E R, Chin; R W, Grange; R, Bassel-Duby; +1 Authors
Abstract

Myoglobin, an intracellular haemoprotein expressed in the heart and oxidative skeletal myofibres of vertebrates, binds molecular oxygen and may facilitate oxygen transport from erythrocytes to mitochondria, thereby maintaining cellular respiration during periods of high physiological demand. Here we show, however, that mice without myoglobin, generated by gene-knockout technology, are fertile and exhibit normal exercise capacity and a normal ventilatory response to low oxygen levels (hypoxia). Heart and soleus muscles from these animals are depigmented, but function normally in standard assays of muscle performance in vitro across a range of work conditions and oxygen availability. These data show that myoglobin is not required to meet the metabolic requirements of pregnancy or exercise in a terrestrial mammal, and raise new questions about oxygen transport and metabolic regulation in working muscles.

Keywords

Mice, Knockout, Myoglobin, Muscles, Physical Exertion, Heart, Biological Evolution, Oxygen, Mice, Fertility, Pregnancy, Animals, Female, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    248
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
248
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!