Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1998 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1998
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Primary motor cortex is involved in bimanual coordination

Authors: O, Donchin; A, Gribova; O, Steinberg; H, Bergman; E, Vaadia;

Primary motor cortex is involved in bimanual coordination

Abstract

Many voluntary movements involve coordination between the limbs. However, there have been very few attempts to study the neuronal mechanisms that mediate this coordination. Here we have studied the activity of cortical neurons while monkeys performed tasks that required coordination between the two arms. We found that most neurons in the primary motor cortex (MI) show activity specific to bimanual movements (bimanual-related activity), which is strikingly different from the activity of the same neurons during unimanual movements. Moreover, units in the supplementary motor area (SMA; the area of cortex most often associated with bimanual coordination) showed no more bimanual-related activity than units in MI. Our results challenge the classic view that MI controls the contralateral (opposite) side of the body and that SMA is responsible for the coordination of the arms. Rather, our data suggest that both cortical areas share the control of bilateral coordination.

Related Organizations
Keywords

Motor Neurons, Electromyography, Motor Cortex, Animals, Extremities, Female, Macaca mulatta, Psychomotor Performance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    270
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
270
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!