Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1973 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1973
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nitrogen Fixation in Termites

Authors: James W. Mertins; John A. Breznak; Harry C. Coppel; Winston J. Brill;

Nitrogen Fixation in Termites

Abstract

SOME termites can live on a diet of cellulose filter paper1. This characteristic prompted Hungate2 to question the possibility of N2 fixation in termites by estimating the N balance of growing termite colonies, but he found no net increase in total colony N. Toth3, on the other hand, incubated macerated termites in an N-free organic medium and observed an increase in fixed N in the solution. He used long incubation times, however, and possibly selected for N2-fixing organisms in the medium. We decided to reinvestigate the question of N2 fixation in termites by exploiting the sensitivity of the acetylene reduction assay, a reliable indicator of N2 fixation4,5. Preliminary reports of these results have already been published6,7.

Related Organizations
Keywords

Insecta, Bacteria, Nitrogen Fixation, Animals, Cellulose, Symbiosis, Insect Control, Wood, Soil Microbiology, United States

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    226
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
226
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!