Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1968 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1969
versions View all 2 versions
addClaim

Tensile Properties of Articular Cartilage

Authors: G E, Kempson; M A, Freeman; S A, Swanson;

Tensile Properties of Articular Cartilage

Abstract

ARTICULAR cartilage consists principally of collagen fibres embedded in a mucopolysaccharide ground substance. Electron microscopy studies1 show that the collagen fibres near the articular surface are predominantly parallel to the surface; viewed perpendicularly to the surface, they also show a dominant orientation which varies systematically over the whole joint surface. In contrast, the fibres in the deeper zones have a more random distribution with a tendency to be perpendicular to the surface. The fibre diameter and distance between adjacent fibres appear to increase with depth from the articular surface. Chemical and physico-chemical studies (unpublished results of H. Muir and A. Maroudas) confirm that the collagen density decreases with depth from the articular surface.

Related Organizations
Keywords

Cartilage, Articular, Male, Humans, Female, Collagen, Femur, Middle Aged, Aged, Biomechanical Phenomena

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!