Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1957 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activation of Polynucleotide Phosphorylase by Salts

Authors: R F, BEERS;

Activation of Polynucleotide Phosphorylase by Salts

Abstract

IN the course of purification studies of polynucleotide phosphorylase (polyase) from M. lysodeikticus we have on several occasions noticed that, after dialysis against buffers at low ionic strength or distilled water, considerable loss of enzyme activity occurred. With the addition of a salt such as sodium acetate or potassium chloride the activity of the enzyme was restored. The activation by potassium chloride of the polymerization of adenylic acid from adenosine diphosphate, determined by rate of release of orthophosphate at pH 9.5, is shown in Fig. 1. The optimum salt concentration is 0.2 M potassium chloride. Higher concentrations of the salt become inhibitory. Parallel studies based on the determination of polymer concentrations yielded identical results1. The following salts activate in the order: KCl > NaCl > Na2SO4 = HCOONa > CH3COONa > LiCl.

Related Organizations
Keywords

Polyribonucleotide Nucleotidyltransferase, Phosphorylases, Salts

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!