Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1999 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1999
versions View all 2 versions
addClaim

A complex clathrate hydrate structure showing bimodal guest hydration

Authors: K A, Udachin; J A, Ripmeester;

A complex clathrate hydrate structure showing bimodal guest hydration

Abstract

Interactions between hydrophobic groups in water, as well as biomolecular hydration more generally, are intimately connected to the structure of liquid water around hydrophobic solutes. Such considerations have focused interest on clathrate hydrates: crystals in which a hydrogen-bonded network of water molecules encages hydrophobic guest molecules with which the water interacts only by non-directional van der Waals forces. Three structural families of clathrate hydrates have hitherto been recognized: cubic structure I (2M(S)-6M(L) x 46H2O), cubic structure II (16M(S) x 8M(L)-136H2O) and hexagonal structure H (M(L) x 3M(S) x 2M(S) x 34H2O) hydrates (here M(L) and M(S) are the hydrophobic guest sites associated with large and small cavities, respectively). Here we report a new hydrate structure: 1.67 choline hydroxide-tetra-n-propylammonium fluoride x 30.33H2O. This structure has a number of unusual features; in particular the choline guest exhibits both hydrophobic and hydrophilic modes of hydration. Formally the structure consists of alternating stacks of structure H and structure II hydrates, and might conceivably be found in those settings (such as seafloor deposits over natural-gas fields) in which clathrate hydrates form naturally.

Keywords

Molecular Conformation, Water, Crystallization, Choline

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    132
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
132
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!