Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioral Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1037/a002...
Article . 2011 . Peer-reviewed
Data sources: SNSF P3 Database
Behavioral Neuroscience
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

Capacity of visual classical conditioning in Drosophila larvae.

Authors: von Essen Alina M H J; Pauls Dennis; Thum Andreas S; Sprecher Simon G;

Capacity of visual classical conditioning in Drosophila larvae.

Abstract

Vision is an ancient sense essential for various aspects of animal behavior. Visual information not only leads to immediate, temporary, and rapid behavioral responses but also has lasting effects. Naïve behavioral responses to light are not always identical but can be altered based on positive or negative experience-a process defined as visual learning. In this study, Drosophila larvae were used as a simple model to study visual classical conditioning. We show that larvae are able to associate positive or negative cues with either light or darkness, thus changing their native light-preference. This effect can be robustly provoked through gustatory stimuli and electric shock. We further show that light can not only be used as a conditioned stimulus but also as an unconditioned stimulus, as punishment in the olfactory classical conditioning procedure, possibly forming two different kinds of memories. Our findings show that even though larvae show a strong naïve response when exposed to light, the animals display a comparably large repertoire of visual memories that can be formed. Therefore, our study provides an impacting entry point into the genetic dissection of the neuronal circuit that underlies different types of visual learning.

Country
Germany
Keywords

info:eu-repo/classification/ddc/570, Drosophila melanogaster, Larva, Conditioning, Classical, Visual Perception, Animals, Learning, Taste Perception, Nerve Net, Photic Stimulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Green
bronze