
Because reaction time (RT) tasks are generally repetitive and temporally regular, participants may use timing strategies that affect response speed and accuracy. This hypothesis was tested in 3 serial choice RT experiments in which participants were presented with stimuli that sometimes arrived earlier or later than normal. RTs increased and errors decreased when stimuli came earlier than normal, and RTs decreased and errors increased when stimuli came later than normal. The results were consistent with an elaboration of R. Ratcliff's diffusion model (R. Ratcliff, 1978; R. Ratcliff & J. N. Rouder, 1998; R. Ratcliff, T. Van Zandt, & G. McKoon, 1999), supplemented by a hypothesis developed by D. Laming (1979a, 1979b), according to which participants initiate stimulus sampling before the onset of the stimulus at a time governed by an internal timekeeper. The success of this model suggests that timing is used in the service of decision making.
Adult, Male, Adolescent, Middle Aged, Serial Learning, Biological Clocks, Time Perception, Reaction Time, Humans, Attention, Female
Adult, Male, Adolescent, Middle Aged, Serial Learning, Biological Clocks, Time Perception, Reaction Time, Humans, Attention, Female
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 64 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
