Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 1984 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Relict and other anomalous grains in chondrules: Implications for chondrule formation

Authors: Alfred Kracher; Edward R. D. Scott; Klaus Keil;

Relict and other anomalous grains in chondrules: Implications for chondrule formation

Abstract

We have identified relict olivine and pyroxene grains in chondrules from ordinary and carbonaceous chondrites that probably did not crystallize in situ. Some of these olivines are clear, but others contain fine‐grained Fe,Ni (‘dusty olivines’) and resemble previously described occurrences in ordinary chondrites. There are also chondrules in which all olivine is dusty. We conclude: (1) not all relict olivines are dusty, (2) not all dusty olivines crystallized outside the chondrule in which they occur,and (3) some dusty olivines were produced during chondrule formation by a reduction process that affected the whole chondrule. The occurrence of dusty olivines and relict pyroxenes and olivines in chondrules from carbonaceous as well as ordinary chondrites supports the argument that chondrules from all chondrites had similar origins and histories. We propose that chondrules and mineral fragments were transported across f(O2) gradients in the solar nebula while they were hot, or were reheated in an environment different from the one in which they formed. Partially molten chondrules sometimes incorporated mineral grains or chondrules with different redox states, producing compound chondrules and chondrules containing anomalous grains. Dusty olivines may also have formed when hot chondrules were transported to regions of lower oxygen fugacity.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!