
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1029/2023gl104228
AbstractTwo air‐sea interaction quantification methods are employed on synthetic aperture radar (SAR) scenes containing atmospheric‐turbulence signatures. Quantification performance is assessed on Obukhov length L, an atmospheric surface‐layer stability metric. The first method correlates spectral energy at specific turbulence‐spectrum wavelengths directly to L. Improved results are obtained from the second method, which relies on a machine‐learning algorithm trained on a wider array of SAR‐derived parameters. When applied on scenes containing convective signatures, the second method is able to predict approximately 80% of observed variance with respect to validation. Estimated wind speed provides the bulk of predictive power while parameters related to the kilometer‐scale distribution of spectral energy contribute to a significant reduction in prediction errors, enabling the methodology to be applied on a scene‐by‐scene basis. Differences between these physically based estimates and parameterized numerical models may guide the latter's improvement.
550, QC801-809, Geophysics. Cosmic physics, 551, [SDU] Sciences of the Universe [physics], machine learning, surface-layer stability, radars, [SDU]Sciences of the Universe [physics], surface‐layer stability, regression, Obukhov length, SAR
550, QC801-809, Geophysics. Cosmic physics, 551, [SDU] Sciences of the Universe [physics], machine learning, surface-layer stability, radars, [SDU]Sciences of the Universe [physics], surface‐layer stability, regression, Obukhov length, SAR
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 18 | |
downloads | 5 |