Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Solid Earth
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://doi.org/10.1002/essoar...
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Roles of Heat and Gas in a Mushy Magma Chamber

Authors: Yang Liao;

The Roles of Heat and Gas in a Mushy Magma Chamber

Abstract

AbstractCrustal magmatic systems likely consist of magmatic reservoirs dominated by crystal mush. Recent studies suggest that the physical processes occurring in crystal mush could alter the response of magmatic reservoirs during volcanic unrest. Here, we present a magma chamber deformation model that incorporates two new aspects in crystal mush: heat and exsolved gas. The model is based on earlier studies by Liao et al. (2021, https://doi.org/10.1029/2020JB019395) with additional processes including thermal‐mechanical coupling, dependence of material properties on gas content, and temperature evolution following an injection of hotter magma. The post‐injection time‐dependent evolution of the system can be grouped into three periods, which are dominated by poroelastic diffusion (short term), viscoelastic relaxation (mid term), and thermal equilibration (long term). All three time‐regimes are strongly affected by gas distribution, which alters the relative compressibility of the crystal‐rich and crystal‐poor regions in the chamber. The contribution of thermal evolution emerges during the mid‐term evolution. The time‐dependent evolution of the system highlights the intrinsic ability of a gas‐bearing mushy magma chamber to generate non‐monotonic time series of stresses, deformation, and magma transport.

Related Organizations
Keywords

Magma chamber, Crystal mush, 550, Exsolved volatiles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!