Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Geophysical Research Atmospheres
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Geophysical Research Atmospheres
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GEO-LEO e-docs
Article . 2021
Data sources: GEO-LEO e-docs
https://dx.doi.org/10.34657/73...
Article . 2021
License: CC BY NC ND
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hemispheric and Seasonal Contrast in Cloud Thermodynamic Phase From A‐Train Spaceborne Instruments

Authors: Villanueva, Diego; Senf, Fabian; Tegen, Ina; Senf, Fabian; 1 Modeling of Atmospheric Processes Leibniz Institute for Tropospheric Research (TROPOS) Leipzig Germany; Tegen, Ina; 1 Modeling of Atmospheric Processes Leibniz Institute for Tropospheric Research (TROPOS) Leipzig Germany;

Hemispheric and Seasonal Contrast in Cloud Thermodynamic Phase From A‐Train Spaceborne Instruments

Abstract

AbstractAerosol‐cloud interactions are an important source of uncertainty in current climate models. To understand and quantify the influence of ice‐nucleating particles in cloud glaciation, it is crucial to have a reliable estimation of the hemispheric and seasonal contrast in cloud top phase, which is believed to result from the higher dust aerosol loading in boreal spring. For this reason, we locate and quantify these contrasts by combining three different A‐Train cloud‐phase products for the period 2007–2010. These products rely on a spaceborne lidar, a lidar‐radar synergy, and a radiometer‐polarimeter synergy. We show that the cloud‐phase from the product combination is more reliable and that the estimation of the hemispheric and seasonal contrast has a lower error compared to the individual products. To quantify the contrast in cloud‐phase, we use the hemispheric difference in ice cloud frequency normalized by the liquid cloud frequency in the southern hemisphere between −42 °C and 0 °C. In the midlatitudes, from −15 to −30 °C, the hemispheric contrasts increase with decreasing temperature. At −30 °C, the hemispheric contrast varies from 29% to 39% for the individual cloud‐phase products and from 52% to 73% for the product combination. Similarly, in the northern hemisphere, we assess the seasonal contrast between spring and fall normalized by the liquid cloud frequency during fall. At −30 °C, the seasonal contrast ranges from 21% to 39% for the individual cloud‐phase products and from 54% to 75% for the product combination.

Related Organizations
Keywords

cloud glaciation, ddc:551.5, hemispheric contrast, cloud‐phase, 550, heterogeneous freezing, ice particles, INP, cloud-phase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid