
arXiv: 2008.02825
AbstractThere is compelling evidence for subsurface water oceans among the three outer Galilean satellites and evidence for an internal magma ocean in the innermost moon, Io. Tidal forces from Jupiter periodically deform these bodies, causing heating and deformation that, if measured, can probe their interior structures. In addition to Jupiter‐raised tides, each moon also raises tides on the others. We investigate moon‐moon tides for the first time in the Galilean moons and show that they can cause significant heating through the excitation of high‐frequency resonant tidal waves in their subsurface oceans. The heating occurs both in the crust and ocean and can exceed that of other tidal sources and radiogenic decay if the ocean is inviscid enough. The resulting tidal deformation can be used to constrain subsurface ocean thickness. Our understanding of the thermal‐orbital evolution and habitability of the Jovian system may be fundamentally altered as a result.
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
